Evolutionary optimization of classifiers and features for single-trial EEG Discrimination

نویسندگان

  • Malin CB Åberg
  • Johan Wessberg
چکیده

BACKGROUND State-of-the-art signal processing methods are known to detect information in single-trial event-related EEG data, a crucial aspect in development of real-time applications such as brain computer interfaces. This paper investigates one such novel approach, evaluating how individual classifier and feature subset tailoring affects classification of single-trial EEG finger movements. The discrete wavelet transform was used to extract signal features that were classified using linear regression and non-linear neural network models, which were trained and architecturally optimized with evolutionary algorithms. The input feature subsets were also allowed to evolve, thus performing feature selection in a wrapper fashion. Filter approaches were implemented as well by limiting the degree of optimization. RESULTS Using only 10 features and 100 patterns, the non-linear wrapper approach achieved the highest validation classification accuracy (subject mean 75%), closely followed by the linear wrapper method (73.5%). The optimal features differed much between subjects, yet some physiologically plausible patterns were observed. CONCLUSION High degrees of classifier parameter, structure and feature subset tailoring on individual levels substantially increase single-trial EEG classification rates, an important consideration in areas where highly accurate detection rates are essential. Also, the presented method provides insight into the spatial characteristics of finger movement EEG patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG Signals for Discrimination of Two Imagined Words

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

متن کامل

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Efficient Data Mining with Evolutionary Algorithms for Cloud Computing Application

With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...

متن کامل

Automatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites

Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BioMedical Engineering OnLine

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007